چگونه پاور کامپیوتر تعمیر کنیم
منبع تغذیه یا Power Supply
منبع تغذیه در کامپیوتر، تامین کننده انرژی و برق مصرفی اجزا مختلف کامپیوتر است و از این نظر آن را می توان قلب کامپیوتر دانست. همانطور که قلب خون کافی برای تامین انرژی مورد نیاز بافت های مختلف بدن را به آنها می رساند، منبع تغدیه نیز توان مورد نیاز برای قسمت های مختلف سیستم را تامین می کند و بدون وجود یک منبع تغذیه مناسب و خوب، بهترین قطعات کامپیوتر هم کارایی چندان مناسبی نخواهند داشت.
منبع تغذیه سوئیچینگ (Switched-Mode Power Supply)
منبع تغذیه سوئیچینگ (بصورت مخفف SMPS) یک واحد تغذیه توان (PSU) است که به روش سوئیچینگ عمل رگولاسیون را انجام میدهد. برای ثابت نگه داشتن ولتاژ در خروجی یک منبع تغذیه، دو روش رگولاسیون خطی و سوئیچینگ رایج میباشد.
- در روش رگولاتور خطی از ترانس و المانهای یکسو کننده جریان و فیلتر استفاده میشود. نقطه ضعف این روش، تلفات بالا و بازدهی پائین و عدم دسترسی به رگولاسیون دقیق و کیفیت دلخواه در خروجی منبع تغذیه خطی میباشد. فرکانس کار ترانسها در روش خطی 50 تا 60 هرتز است. ترانسهای فرکانس پایین، اندازه و حجم بزرگی دارند. در روش سوئیچینگ به دلیل استفاده از فرکانس بالای 50 تا 200 کیلوهرتز، حجم و وزن ترانسها به میزان قابل توجهی کاهش مییابد.
- راندمان یا بازده توان در روش سوئیچینگ بسیار بیشتر از روش خطی است. یک منبع خطی با تلف کردن توان، خروجی خود را رگوله میکند ولی در روش سوئیچینگ با تغییر میزان دوره سیکل سوئیچ یا همان Duty Cycle میتوان ولتاژ و جریان خروجی را کنترل کرد.
نکته
با یک طراحی خوب در روش سوئیچینگ میتوان به حدود 90% بازدهی دست یافت. در توانهای بالا از روش PWM که مخفف Pulse Width Modulation می باشد و در توانهای پائین تر از 30 وات معمولاً از روش کلید زنی به صورت پالسهای معمولی استفاده میشود.
انواع منبع تغذیه
منابع تغذیه دارای ابعاد و شکل های مختلفی می باشند، که باید با جعبه و مادربرد نصب شده در داخل جعبه رایانه همخوانی و سازگاری داشته باشد.
- XT
- خوابیده یا رومیزی AT Desk
- برجی یا ایستاده AT Tower
- Baby AT
- باریک، نقلی Rectifier
- ATX
- SFX
- WTX
در حال حاضر بیشتر از نوع ATX استفاده می شود و مدل های دیگر منسوخ شده اند و فقط در رایانه های قدیمی یافت می شوند.
ویژگی های منبع تغذیه نوع ATX
- در منابع ATX جریان هوا از داخل کیس مکیده شده و از قسمت عقبی منبع تغذیه به خارج هدایت می شود تا علاوه بر منبع تغذیه برد اصلی نیز خنک شود.
- رابط منبع به برد اصلی دارای ولتاژ 3/3 ولت بوده و دیگر نیاز نیست تنظیم کننده ولتاژ روی برد اصلی قرار بگیرد. (در منبع تغذیه های قدیمی این رابط وجود نداشت و نیاز به یک تنظیم کننده بود تا ولتاژ ورودی را به 3.3 ولت تبدیل کند)
- کلیدی در پشت منبع تغذیه وجود دارد به نام کلید قطع و وصل که برای قطع کامل برق رایانه استفاده می شود. تا این کلید در حالت وصل نباشد سیستم شروع به کار نخواهد کرد.
مدل های جدیدتر منابع تغذیه
- مدل STX
- در منبع تغذیه STX پین ولتاژ 5- (سیم سفید) وجود ندارد و علت حذف ولتاژ 5- آن است که این ولتاژ فقط در وسایلی که با گذرگاه ISA کار می کردند کاربرد داشت. از آنجای که مادربورد های جدید همگی با گذرگاه PCI و AGP کار می کنند لذا نیازی به این ولتاژ نداریم.
- مدل WTX
- این منبع تغذیه برای ایستگاه های کاری (کامپیوتر مادر درشبکه) طراحی شده است. این منبع تغذیه برای استفاده درسیستم های با چند پردازنده ساخته شده است که دارای قدرت بین 460 تا 800 وات بلکه بیشتر می باشد.
آشنایی با مدار پاور
به شکل زیر توجه کنید.
شکل بالا یک نمای شماتیک از اصول اولیه مدار پاور می باشد.
به مدار زیر توجه کنید.
نکته
فایل های عکس این مدار را در ریزولوشن بالا از این لینک دریافت کنید.
این مدار از بخش های زیر تشکیل شده است.
- مدار قدرت
- مدار 5 ولت StandBy یا 5vSB
- مدار تفاضلی یا Ple and Amplifier
- مدار خروجی یا ثانویه ترانس T1
مدار قدرت
به شکل زیر توجه کنید.
- محل ورود برق 220 ولت
- در ابتدا برق 220 ولت AC توسط یک پایه که دارای سه پین است وارد مدار پاور می شود.
- خازن ضربه گیر
- یک خازن به عنوان ضربه گیر بطور موازی با محل ورود برق 220 ولت به پاور قرار دارد. هنگامی که دو شاخه پاور را به پریز برق وصل می کنید یک جرقه زده می شود و ممکن است این جرقه به مدار آسیب بزند. خازن ضربه گیر ولتاژ اضافه موقع جرقه زدن را می گیرد و اجازه نمی دهد این ولتاژ اضافه وارد مدار پاور شود.
- با استفاده از فیوز تنها اجازه عبور مقدار مشخصی جریان داده می شود و اگر جریان بیشتری از آنچه روی فیوز نوشته شده است رد شود فیوز می سوزد و ولتاژ مدار قطع می شود.
- مقاومت NTC با دما نسبت عکس دارد. در لحظه اول که پاور روشن می شود مقاومت NTC اجازه عبور جریان زیادی را نمی دهد و با بالا رفتن دما در پاور مقاومت NTC کمتر می شود و جریان بیشتری وارد مدار پاور می شود.
- با توجه به اینکه منابع تغذیة سوئیچینگ به عنوان یک منبع تولید کننده نویز برای مدارات مخابراتی می باشند، با فیلتر کردن ورودی و خروجی، باید میزان اثر تداخل الکترومغناطیسی را تا حد امکان کاهش داد. چرا که با بالا رفتن فرکانس در مدار داخلی پاور، هارمونیکهایی با فرکانس بالاتر از فرکانس اصلی منبع ایجاد می گردند و موجب تداخل در باندهای رادیویی و مخابراتی میگردد. معمولا این بخش از دو عنصر القاگر و خازن تشکیل شده است، که وظیفه ممانعت از خروج نویز حاصل از سیستم سوئیچینگ منبع تغذیه به بیرون و همچنین ممانعت از ورود فرکانسهای اضافی حاصل از دوران موتورهای الکتریکی و یا سیستمهای تولید کننده حرارت به داخل منبع تغذیه را بر عهده دارد. امروزه علاوه بر تقویت لاین فیلتر، با تعبیه PFC در بخش ورودی، پیشرفتهای بیشتری صورت گرفته است.
- مدار Line Filter در بیشتر پاور ها حذف شده است.
- از پل دیود برای یکسوسازی تمام موج در مدار پاور استفاده می شود. در ابتدا در برق 220 ولت شهری که دارای ولتاژ AC می باشد نمودار ولتاژ آن بصورت زیر می باشد.
- فیوز
- مقاومت NTC
- مدار Line Filter یا EMI
- پل دیود
و بعد از پل دیود نمودار ولتاژ بصورت زیر می شود.
مشاهده می شود که بعد از پل دیود ولتاژ کاملا یکسو شده است.
- خازن های ورودی C1 و C2
- ولتاژ 220 ولت صاف شده توسط پل دیود در اختیار خازنهای الکترولیت ورودی (C1 و C2) با تحمل ولتاژ بالاتر از 200 ولت قرار داده می شود تا انرژی مورد نظر برای کارکرد ترانزیستور های مدار سوئیچینگ را فراهم آورند. این قسمت معمولا از دو خازن الکترولیت با ظرفیتهای متناسب با توان منبع تغذیه تشکیل شده است، که وظیفه کنترل سطح ولتاژ ورودی در هنگام کارکرد پاور و همچنین ذخیره انرژی مورد نیاز مدار سوئیچینگ به هنگام وقفههای کوتاه انرژی، را برعهده دارد. ظرفیت و کیفیت خازنها در این قسمت از اهمیت ویژهای برخوردار میباشند. چرا که ظرفیت انباره انرژی و پارامترهای کیفی این خازنها در کارکرد بدون وقفه مدار وکاهش ریپل خروجی تاثیر گذار میباشد.
- خازن های C1 و C2 در هنگام پر شدن دارای ولتاژی برابر 150 ولت یا بیشتر می شوند که در مجموع 300 ولت DC برق در خود ذخیره می کنند.
- با استفاده از خازن های C1 و C2 نمودار ولتاژ بصورت زیر می شود.
مشاهده می شود که با استفاده از خازن های الکترولیتی C1 و C2 سطح ولتاژ صاف شده است.
نکته
تا اینجا مدار قدرت پاور تمام شد. مدار قدرت پاور در ادامه با مدار های زیر ارتباط دارد.
- مدار سوئیچینگ (Power Switching)
- از دو ترانزیستور MOSFET که با مدار قدرت در ارتباط است و یک ترانزیستور MOSFET که با مدار 5 ولت StandBy مرتبط است تشکیل شده است. به طور معمول ولتاژ DC عرضه شده توسط خازنهای ورودی در این قسمت تبدیل به ولتاژ AC با فرکانس بالا جهت کنترل سطح ولتاژ میگردد. با این کار عملا یک محیط کنترلی انعطافپذیر توسط Duty Cycle ، برای کاهش و افزایش میزان ولتاژ و جریان ایجاد نمودهایم و از طرفی ریپل خروجی را با تعبیه خازنها و سلفهای محدودتری میتوانیم کنترل نماییم. همچنین با بالا بردن فرکانس جریان AC ، نیاز به ترانسفورماتور (T1) با ابعاد خیلی بزرگ نخواهیم داشت و از اتلاف انرژی بیشتر، جلوگیری نمودهایم. این بخش معمولا از دو ترانزیستور قدرت (MOSFET) تشکیل شده است که وظیفه کنترل سطح ولتاژ خروجی از طریق زمان روشن و خاموش شدن ( سوئیچ کردن ) را بر عهده دارد . همچنین ترانزیستور سوئیچ دیگری نیز برای عملیات راهاندازی مدار StandBy پاور، در این قسمت وجود دارد، که عموما تا زمان قطع کامل ولتاژ ورودی، درگیر میباشد.
نکته
دقت کنید در بعضی مدار ها برای راه اندازی مدار StandBy بجای ترانزیستور MOSFET موجود برای ساخت ولتاژ AC فرکانس بالا در مدار سوئیچینگ از یک آی سی (IC M605 در این مدار) برای این کار استفاده می شود.
- مدار 5vSB
- آی سی های داخلی پاور برای عملکرد نیاز به یک ولتاژ DC داخلی دارد که وظیفه روشن کردن آی سی مدار پاور را بر عهده دارد. در این مدار برای تامین ولتاژ 5 ولت باید ولتاژ 300 ولت DC خازن های C1 و C2 را به یک ولتاژ AC با فرکانس بالا تبدیل کنیم (توسط آی سی M605 در این مدار یا توسط فت IRF موجود در مدار سوئیچینگ) سپس با استفاده از یک ترانس کاهنده ولتاژ 5 ولت StandBy را فراهم کنیم.
- ترانس خروجی T1
- وظیفه ساختن ولتاژ های مناسب در مدار خروجی را بر عهده دارد. دقت کنید برای اینکه ابعاد ترانس ها کاهش یابد لازم است فرکانس ولتاژ بیشتر شود.
نکته
برای کاهش اندازه ترانس در مفهوم کلی لازم است ولتاژ DC فرکانس پایین به ولتاژ AC فرکانس بالا تبدیل شود سپس دوباره DC شود.
مدار 5 ولت StandBy یا 5vSB
مدار داخلی پاور (IC) برای عملکرد نیاز به یک ولتاژ 5 ولتی DC داخلی دارد که وظیفه روشن کردن آی سی کنترل مدار پاور را بر عهده دارد. در این مدار برای تامین ولتاژ 5 ولت باید ولتاژ 300 ولت DC خازن های C1 و C2 را به یک ولتاژ AC با فرکانس بالا تبدیل کنیم (با استفاده از ترانزیستور MOSFET مدار سوئیچینگ یا IC M605 در این مدار) سپس با استفاده از یک ترانس کاهنده و دیود و خازن ولتاژ 5 ولت StandBy را فراهم کنیم.
به شکل زیر توجه کنید.
- IC M605
- با استفاده از این IC یا نمونه های مشابه می توان ولتاژ 300 ولت DC خازن های C1و C2 که با فرکانس 50 هرتز کار می کنند را به ولتاژ AC با فرکانس بالا تبدیل کرد.
- ترانس کاهنده T3
- با استفاده از ترانس کاهنده T3 می توان ولتاژ 300 ولت AC فرکانس بالا را به ولتاژ 5 ولت AC با فرکانس بالا تبدیل کرد.
- با استفاده از این دیود های ولتاژ 5 ولت AC فرکانس بالا یکسو می شود.
- با استفاده از این خازن ها ولتاژ 5 ولت AC فرکانس بالای کسو شده به ولتاژ 5 ولت DC تبدیل می شود که همان ولتاژ 5vSB می باشد.
- رنگ این سیم در کانکتور خروجی بنفش می باشد و ولتاژ آن 5 ولت می باشد. این ولتاژ در هر دو حالت روشن و خاموش بودن رایانه وجود دارد، این سیگنال به صورت نرم افزاری در حالت خاموش بودن رایانه آن را روشن می کند.
- این IC یا نمونه های مشابه (TL494) مهمترین IC در مدار پاور می باشد و وظیفه کنترل پاور را بر عهده دارد. در اغلب پاورها از دو آی سی استفاده میشود.
- یک IC که موج PWM تولید میکند و به بیس ترانزیستورهای قدرت اعمال می کند (OP1 و OP2)
- یک IC که عمل مقایسه کنندگی ولتاژ (LM339) را انجام می دهد.
- آی سی مقایسه کننده ولتاژ ورودی را با ولتاژ مرجع مقایسه کرده و در صورت صحت ، آی سی SG6105 یا TL494 روشن میشود درغیر این صورت آی سی تا رفع اشکال خاموش می ماند. در صورتی که خروجی ها اتصال کوتاه شوند (جریان زیاد از آنها کشیده شود)، یا ولتاژ آنها از حد تعریف شده بالا تر رود آی سی SG6105 یا TL494 توسط این آی سی (LM339) خاموش می شود.
- ولتاژ ایجاد شده در خروجی IC SG6105 وارد مدار تفاضلی می شود سپس در مدار تفاضلی بعد از تبدیل شدن به یک ولتاژ AC با فرکانس بالا وارد ترانس افزاینده T2 می شود سپس با استفاده از دیود یکسو می شود و با استفاده از خازن تبدیل به یک ولتاژ DC با فرکانس بالا می شود و به پایه های بیس (Gate) ترانزیستور های مدار سوئیچینگ اعمال می شود.
- برای روشن کردن منبع تغذیه بدون اتصال به مادر بورد بایستی پین شماره 14 که به رنگ سبز رنگ می باشد و به PS_ON موسوم است را به یکی از شاخه های بدنه GND یا همان سیم مشکی وصل کنید. در منبع تغذیه های جدید تابعی تعریف شده است که به وسیله نرم افزارها می توان منبع تغذیه را کنترل نمود و باعث روشن شدن منبع تغذیه می شود. این سیگنال به عنوان روشن بودن و یا تأمین قدرت (Power On) مادربرد را کنترل می کند.
- پس از روشن شدن سیستم، منبع تغذیه به مقداری زمان احتیاج دارد تا به سطح ولتاژ مفید و مطلوب برسد و اگر سیستم شروع به کار کند و منبع تغذیه بعد از آن به کار افتد اتفاقات بدی رخ خواهد داد. برای درستی ولتاژ و یا قدرت مطلوب به مادربرد برای اینکه رایانه قبل از آمادگی منبع تغذیه روشن نگردد سیگنالی به نام (Power Good) ارسال می شود و تا قبل از رسیدن آن مادربرد کاری انجام نمی دهد و در صورتی که مشکلی در برق به وجود آید و جرقه ای تولید شود منبع تغذیه این سیگنال را قطع می کند و مادربرد کار نخواهد کرد. رنگ سیم آن خاکستری است.
- دیود D11 و D12
- خازن C18 و C19
- سیم 5vSB
- IC SG6105
- خروجی OP1 و OP2
- سیم PSON
- سیم PG
مدار تفاضلی یا Ple and Amplifier
وظیفه مدار تفاضل ایجاد ولتاژی مناسب برای پایه بیس (Gate) ترانزیستور های مدار سوئیچینگ می باشد.
به شکل زیر توجه کنید.
- ورودی OP1
- ولتاژ DC فرکانس بالا در خروجی OP1 و OP2 از IC SG6105 وارد ورودی مدار تفاضل یا Ple and Amplifier می شود.
- ترانزیستور Q3 و Q4
- با استفاده از این ترانزیستور ها ولتاژ DC فرکانس بالا (5 ولت) تبدیل به ولتاژ AC فرکانس بالا می شود.
- با استفاده از ترانس افزاینده T2 ولتاژ AC فرکانس بالا (5 ولت) تبدیل به یک ولتاژ AC بالاتر و با فرکانس بالا می شود.
- با استفاده از دیود ها و خازن های این بخش از مدار ولتاژ AC فرکانس بالا ایجاد شده در خروجی ترانس T2 تبدیل به دو ولتاژ DC فرکانس بالا می شود و به پایه های بیس (Gate) ترانزیستور های MOSFET مدار سوئیچینگ (Q1 و Q2) اعمال می شود.
- دو ترانزیستور مدار سوئیچینگ می باشد و پایه Gate آن ها توسط مدار تفاضلی تحریک می شود و پایه Drain آن توسط ولتاژ 300 ولت DC خازن های ورودی C1 و C2 تغذیه می شود. در اینجا دو کار صورت می گیرد.
- اگر ولتاژ پایه Gate صفر بود ترانزیستور ولتاژ 300 ولت DC را رد می کند.
- اگر ولتاژ پایه Gate صفر نبود ولتاژ در پایه Source برابر صفر می شود.